
Chapter 9: Memory Management and Garbage
Collection

Introduction

Efficient memory management is crucial in Java programming, especially for large-scale
applications. Unlike languages like C or C++, Java automatically handles memory
allocation and deallocation through its built-in Garbage Collector (GC). This feature
minimizes memory leaks and frees developers from the complexities of manual memory
handling. This chapter explores Java's memory model, how objects are stored and
removed, the working of garbage collection, and ways to optimize memory usage in Java
applications.

9.1 Java Memory Model Overview

Java divides memory into several distinct areas, each serving a specific purpose in the
program's execution. These memory regions are managed by the Java Virtual Machine
(JVM).

9.1.1 Key Memory Areas

Memory Area Description

Heap Stores objects and class instances. This is where garbage
collection operates.

Stack Stores method calls and local variables. Each thread has its own
stack.

Method Area Contains class-level data, such as method definitions and static
variables.

PC Register Keeps track of the JVM instruction currently being executed by
each thread.

Native Method
Stack

Used for native (non-Java) method calls, typically written in C/C++.

9.2 Object Allocation in Java

In Java, objects are always created on the heap using the new keyword. For example:

javaCopy codeEmployee emp = new Employee(); // Object stored in heap

Key Points:
• Heap memory is shared among all threads.

• Once there are no references to an object, it becomes eligible for garbage
collection.

• Variables inside methods (primitives or object references) are stored in the stack.

9.3 Understanding Garbage Collection (GC)

9.3.1 What is Garbage Collection?

Garbage collection is the process of automatically identifying and freeing memory used
by objects that are no longer reachable in the application.

9.3.2 Why Use Garbage Collection?
• Prevents memory leaks.

• Reduces chances of OutOfMemoryError.

• Makes memory management easier and safer.

9.4 How Garbage Collection Works

9.4.1 Mark and Sweep Algorithm
1. Mark Phase: The GC identifies which objects are still reachable (i.e., still

referenced).

2. Sweep Phase: Unreachable objects are removed, and memory is reclaimed.

9.4.2 Reachability Analysis

Java uses reachability from GC Roots like:

• Local variables in stack

• Static variables

• Active thread references

If an object is not reachable from any of these, it is considered garbage.

9.5 Types of Garbage Collectors in Java

9.5.1 Serial Garbage Collector
• Uses a single thread.

• Best suited for small applications.

bashCopy code-XX:+UseSerialGC

9.5.2 Parallel Garbage Collector (Throughput GC)
• Uses multiple threads for minor GC.

• Good for multi-threaded applications.

bashCopy code-XX:+UseParallelGC

9.5.3 CMS (Concurrent Mark-Sweep) Collector
• Minimizes pauses by doing GC in parallel with the application.

• Deprecated in newer versions of Java.

bashCopy code-XX:+UseConcMarkSweepGC

9.5.4 G1 (Garbage First) Collector
• Designed for large heaps.

• Balances pause time and throughput.

• Breaks heap into regions.

bashCopy code-XX:+UseG1GC

9.5.5 Z Garbage Collector (ZGC) and Shenandoah
• Low-latency collectors in Java 11+ and OpenJDK.

• Suitable for ultra-low pause time requirements.

9.6 JVM Heap Structure

Java divides the heap into generations:

9.6.1 Young Generation
• New objects are allocated here.

• Frequent minor GCs occur.

• Includes Eden and Survivor spaces.

9.6.2 Old (Tenured) Generation
• Stores long-lived objects.

• Less frequent but more time-consuming major GCs.

9.6.3 Permanent Generation / Metaspace
• Stores class metadata.

• Replaced by Metaspace in Java 8 onwards.

9.7 Finalization and finalize() Method

Java provides the finalize() method to allow cleanup actions before an object is
removed.

javaCopy code@Override
protected void finalize() throws Throwable {
 System.out.println("Cleaning up before GC");
}

Note: finalize() is deprecated since Java 9. Use try-with-resources or
clean-up hooks instead.

9.8 Memory Leaks in Java

Even though Java has GC, memory leaks can still occur if references are unintentionally
held.

Common Causes:
• Static variables holding object references

• Listeners not removed

• Caches or maps (e.g., HashMap) growing without bounds

Solution: Use WeakReference, SoftReference, or proper removal strategies.

9.9 Monitoring and Tuning Garbage Collection

9.9.1 JVM Tools
• jconsole – GUI-based monitoring tool

• jvisualvm – Profiling, GC activity, memory usage

• jstat, jmap, jstack – Command-line monitoring

9.9.2 JVM Options for GC Tuning
bashCopy code-verbose:gc # Prints GC details
-Xms512m -Xmx2048m # Set heap size
-XX:+PrintGCDetails # Show GC stats
-XX:+UseG1GC # Use G1 collector

9.10 Best Practices for Efficient Memory Management
• Reuse objects when possible.

• Avoid memory leaks by clearing unused references.

• Use StringBuilder instead of String for concatenations.

• Use Object Pools for expensive objects (e.g., DB connections).

• Profile applications for heap usage regularly.

Summary

In this chapter, we explored how Java handles memory through its automatic garbage
collection system. Java's heap-based object allocation, coupled with a variety of
garbage collectors (Serial, Parallel, G1, ZGC), makes memory management both powerful
and efficient. We also covered memory areas, the object life cycle, GC algorithms, tools for
monitoring, and best practices to avoid memory leaks. Understanding memory
management helps Java developers write robust, efficient, and scalable applications.

	Chapter 9: Memory Management and Garbage Collection
	Introduction
	9.1 Java Memory Model Overview
	9.1.1 Key Memory Areas

	9.2 Object Allocation in Java
	Key Points:

	9.3 Understanding Garbage Collection (GC)
	9.3.1 What is Garbage Collection?
	9.3.2 Why Use Garbage Collection?

	9.4 How Garbage Collection Works
	9.4.1 Mark and Sweep Algorithm
	9.4.2 Reachability Analysis

	9.5 Types of Garbage Collectors in Java
	9.5.1 Serial Garbage Collector
	9.5.2 Parallel Garbage Collector (Throughput GC)
	9.5.3 CMS (Concurrent Mark-Sweep) Collector
	9.5.4 G1 (Garbage First) Collector
	9.5.5 Z Garbage Collector (ZGC) and Shenandoah

	9.6 JVM Heap Structure
	9.6.1 Young Generation
	9.6.2 Old (Tenured) Generation
	9.6.3 Permanent Generation / Metaspace

	9.7 Finalization and finalize() Method
	9.8 Memory Leaks in Java
	Common Causes:

	9.9 Monitoring and Tuning Garbage Collection
	9.9.1 JVM Tools
	9.9.2 JVM Options for GC Tuning

	9.10 Best Practices for Efficient Memory Management
	Summary

